id: Гость   вход   регистрация
текущее время 00:24 11/07/2020
Автор темы: spinore, тема открыта 12/03/2012 07:38 Печать
http://www.pgpru.com/Форум/Криптография/ВопросыПоКвантовымКаналамИхМоделированиеИПрименение
создать
просмотр
ссылки

Вопросы по квантовым каналам, их моделирование и применение


Начало взято отсюда.


Я ненадёжный товарищ, могу притянуть к тематике сайта почти любой оффтопик :)


Классическая теория информации



Можно сказать, что в общих чертах это верно, и с тех пор ничего не изменилось. Может быть, там не очень понятно написано, но задача в целом предельно ясная. Если у Алисы и Боба есть наборы битов, с какими-то распределениями (у Алисы случайная величина X, у Боба — Y), то считается, что информация, доступная им обоим, вычисляется как взаимная информация между X и Y. Также, взаимная информация — идеальная мера наличия корреляций между ними. Соответственно, если не канале сидит Ева и имеет свою случайную величину Z, то доступная ей информация Алисы, опять же, вычисляется, как взаимная информация между Евой и Алисой (аналогично для случая Алисы и Боба). Если речь идёт не о дискретных распределениях, а о непрерывных, концептуально ничего в этих определениях не меняется. На практике при работе с непрерывными переменными делают какую-то там дискретизацию, а теория рассматривает идеальную модель. Если посмотреть, как формально определяют анонимность, то там опять же будет использоваться взаимная информация (для простоты иногда назвают энтропией):


энтропия описывает информацию (измеренную в битах), содержащуюся в вероятностном распределении, которое описывает связь между множеством субъектов (анонимным множеством) и элементами интересов. В [172] энтропию предлагается рассматривать как меру эффективности размера множества анонимности. Если энтропия нормализована по максимуму, который может обеспечить система (если она совершенна и не даёт утечки информации) для заданного числа пользователей, мы получаем степень анонимности [57], которая даёт меру производительности предоставляемой анонимности.

Вот, мы имеем такую фундаментальную величину — взаимную информацию. Это понятие родом из давно известной классической теории информации. Если Алиса передаёт информацию Бобу по какому-то каналу, то, находя максимально достижимую взаимную информацию между ними (что, естественно, требует задать правила кодирования информации и её извлечения), мы получим пропускную способность классического канала. В английском её называют «capacity», потому слово-паразит «ёмкость канала» стало употребляться наряду с правильным исходным термином «пропускная способность». Шеннон доказал теоремы кодирования, после чего понятие пропускной способности приобрело математическую основу, а не спекулятивную. Конечно, с идеальными каналами всё просто, а вот задача вычислить пропускную способность для канала с шумом, где Боб получает не совсем то, что шлёт Алиса, довольно трудная. В классической теории информации до сих пор решают такие задачи, до сих пор есть куча классических каналов, для которых пропускные способности неизвестны (я плохо представляю теории информацию (ТИ) в целом, классическую ТИ по книгам никогда не изучал, знания обрывочны, но вроде бы я верно передаю суть проблемы). Классические каналы активно используются для передачи информации в куче реальных приборов, потому задача вычисления пропускной способности нужная и вполне инженерная.


Квантовая теория информации


Если же предположить, что у Алисы и Боба не случайные величины с какими-то битами или непрерывные классические распределения, но квантовые состояния, в которые закодирована какая-то информация, то, опять же, можно поставить вопрос: чему равна та информация, которая есть у них обоих одновременно, если квантовые состояния разные? Тут теорема кодирования Шеннона не работает, и требуется ввести её квантовый аналог. Этим аналогом является теорема кодирования Холево3, где роль взаимной информации играет так называемая «граница (bound) Холево» или «информация Холево». Конечно, в обычной речи никто не произносит эти длинные определения, потому на сленге это звучит как «надо сосчитать/найти/вычислить/оценить Холево». Ну, все так говорят, не только русские. В полной аналогии с классической теорией информации пропускная способность квантового канала задаётся максимумом Холево :) А если у нас сидит на канале Ева и снифает, надо оценить Холево между Евой и Алисой, или между Евой и Бобом, что даёт так называемую «private capacity».


Важный момент состоит в том, что граница Холево — теоретический предел. Как его достичь для конкретного типа канала — совершенно не ясно, потому делают следующее: задаются каким-то типом/методом кодирования информации и типом измерения квантовых состояний, извлекающим информацию. Соответственно, взаимная информация (в вполне классическом смысле) между закодированной и измеренной (классической) переменной задаёт (удачного русского термина не знаю) так называемый «rate» — пропускную способность канала при определённых предположениях на метод кодирования и извлечения. Например, для случая непрерывных переменных можно измерять либо магнитную составляющую фотона, либо электрическую, либо обе их вместе, но с ограничениями на точность (в смысле POVM)4, причём и то и то сравнительно легко реализуется на эксперименте. Совместное измерение называется «гетеродинным», а измерение какой-то одной компоненты (она называется «квадратурой поля») — «гомодинным». Применяя эти методы измерения на стороне Боба, можно найти, к примеру, гетеродинный и гомодинный «рейты».


А если бы были дискретные переменные, то всё то же можно аналогично применить к поляризации или спину квантовых частиц. Поскольку статистика, которой подчиняются фотоны, бозонная, каналы называют бозонными. Ещё есть фермионные каналы, но они вызывают куда меньше интереса, т.к. это уже не фотоны на технологичном оптоволокне, а какие-нибудь, думаю, спины ядер, частицы в ловушках и т.д. — может быть, для квантовых «шлейфов» в потенциальном квантовом компьютере на подобной элементной базе это как-то релевантно, не изучал.


До сего момента речь шла о так называемой «классической информации»: хоть для классического, хоть для квантового канала, т.е. о числе классических бит, общих между общающимися сторонами. Но Алиса может пересылать Бобу не биты, а сами состояния квантовых частиц — «телепортировать» их: уничтожать у себя, воскрешая на стороне Боба. Здесь, опять же, нет ничего сложного: есть стандартная схема квантовой телепортации, требующая дополнительный классический канал, по которому Алиса сообщит т состояние, которое было у Алисы изначально. По аналогии такой тип информации называют «квантовым», а то, сколько квантовых состояний Алиса успевает телепортировать Бобу, определяет «квантовую пропускную способность квантового канала» («quantum capacity»). Последняя выражается через так называемую «когерентную информацию».


Квантовое распределение ключа


Теперь о грустном: несмотря на то, что классическая пропускная способность квантового канала — некая фундаментальная величина, интересная с точки зрения абстрактной математики, с практической точки зрения она сейчас никому не интересна и не имеет никаких непосредственных приложений, даже в рамках QKD. Просто сама идея пересылать с квантовыми состояниями информацию может работать, только, раз она сама по себе не обеспечивает никакой ни безопасности, ни высокой пропускной способности, она остаётся никому не нужной.


QKD — очень сложный протокол, но с точки зрения пропускной способности он наоборот очень прост. Для начала, каждый QKD протокол подразумевает фиксированный набор сигнальных состояний (выбор определённых поляризаций или определённых гауссовых состояний), а секретность строится на том, что Ева не знает когда какое из сигнальных состояний Алиса посылает Бобу (но знает каков класс этих состояний, т.е. во что кодируется информация). Поскольку класс используемых в протоколе состояний очень ограниченный, нет смысла говорить о пропускной способности — достаточно посчитать рейты. И даже считая рейты, оказывается, что не надо их оптимизировать по всевозможным сигнальным состояниям и кодированиям — достаточно подставить фиксированные состояния в известную формулу (других в протоколе нет) и потом получить скорость выбработки ключа. Вот собственно поэтому ни максимально передаваемая информация в смысле рейтов, ни классическая пропускная способность не оказываются интересными (а это именно то, что я вычислял). Что интересно, в задаче о QKD трудных оптимизационных проблем такого рода не возникает вообще, в отличие от задачи вычисления пропускной способности. Есть мысли, что, может быть, где-то как-то можно придумать схему более эффективной атаки Евы, что-то сделать новое относительно известного в QKD, как-то применить к QKD наши результаты, но пока успеха нет. Конечно, при подаче всяких грантов наша тема активно пиарится, как имеющая самое непосредственное отношение к QKD, которое «уже есть и работает», и является самой близкой к нам задачей из всех, интересных индустрии, только вот реальность несколько сложнее :(


Есть и другие мысли: допустим, нас интересует не защищённая передача информации, а надёжная. Тогда, пользуясь предварительно распределёнными между Алисой и Бобом запутанными ЭПР-парами частиц и имея обычный классический канал передачи между Алисой и Бобом, можно попытаться сделать передачу информации более помехоустойчивой, чем просто по одному классическому каналу, как это делается в классической теории информации. Но разработать такой протокол и доказать, что он действительно даёт профит — не просто. В общем, если бы что-то такое получилось, здесь, вероятно, наши наработки нашли бы применение. И безопасность с криптографией оказались бы тут ни при чём :)


Квантовые каналы


Теперь немного возвращаясь к статье: в гауссовых каналах передаются гауссовы функции/распределения. На плоскости квадратур
( q, p ) это такие поверхности-шапочки. Сечение такой шапочки параллельно плоскости квадратур даст эллипс. То, насколько далёк центр эллипса от начала координат, определяет комплексное число α, иногда называемое «амплиудой когерентного состояния» |α〉. Когда гауссово состояние проходит через канал, исходных эллипс Алисы как-то искажается, но остаётся эллипсом. При прохождении через «lossy-канал» (канал с затуханием амплитуды?) происходит уменьшение параметра α, что соответствует потери энергии. При этом центр как посылаемого эллипса, так и полученного Бобом, лежат на одной прямой, проходящей через начало координат. Величину уменьшения амплитуды модулируют проницаемостью η ∈ [0,1].


Модель lossy-канала такова: имеется светоделитель (стеклянная призма), на одну грань посылает луч Алиса, на другую — Ева. Их лучи (квантовые состояния) взаимодействуют, а на выходе получается то, что имеет Боб. Такой системой моделируют передачу сигнала по волокну (проницаемость η связан с длиной оптоволокна). В QKD в непрерывных переменных взаимодействие Евы с системой тоже описывают через lossy-канал. У эллипса Евы есть есть эксцентриситет (степень асимметрии) — его обозначают через s и называют степенью сжатия («squeezing») в середе канала (Ева — это и есть среда). А то, насколько широк эллипс по обоим своим главным осям (добавка к величие обеих осей) определяют «тепловые фотоны» Nenv (тут должен быть EuScript-шрифт LaTeX'а для N). Энергию же на входе в канал обозначают как N.


По классификации Холево есть, кажется, 6(?) канонических типов гауссовых квантовых каналов, но в качестве релевантных эксперименту моделей удобно выделить следуюшие три типа: помимо lossy есть «additive noise»-канал (канал с аддитивным классическим шумом), который просто увеличивает параметр Nenv; и «amplification channel» — такой же как lossy, но вместо уменьшения увеличивает α (η > 1), при этом неминуемо растут и тепловые фотоны. Операция, позволяющая увеличить α при как можно меньшем увеличении тепловых фотонов, называется бесшумным усилителем («noiseless amplifier»). Предполагается, что новые протоколы QKD в непрерывных переменных с использованием «бесшумного усилителя» позволят увеличить дистанцию передачи информации (у нас эту тему разрабатывают).


Пропускная способность гауссова lossy-канала математически оказывается функций 4ёх переменных: C = C(s,η,N,Nenv). На то, чтобы аналитически и численно исследовать эту функцию (она — результат оптимизации, зависит от решения трансцендентного уравнения, т.е. очень неявная), расклассифицировать все случаи, найти характерные критические и «суперкритические» параметры и ушли последние годы. Как видите, всё просто, всё можно объяснить на пальцах. Что касается зависимости от параметров, то тоже всё просто: при росте входной энергии только увеличивается пропускная способность, т.к. это — увеличение отношения сигнала к шуму (что вполне физично). На самом деле, C(N) монотонно растёт и выпукло вверх. Аналогично, чем выше проницаемость, тем большая доля сигнала Алисы доходит до Боба, потому C(η) тоже растёт. Телоповой шум в среде (Nenv) — это именно что шум в его классичнском понимании, он делает передачу информации только хуже, потому C(Nenv) только убывает (реально убывает монотонно и выпукло вниз). И остаётся только один параметр — сжатие s, характеризующее асимметрию между квадратурами в среде. Вот с ним беда: C(s) может иметь локальный максимум, или локальный максимум и минимум, или быть монотонной. Между всеми этими режимами есть переходы, вот я их и оценивал/классифицировал.


Из-за этой немонотонности в многомодовом канале сразу же появляется неаддитивность по среде: раз C(s) имеет максимум, то при фиксированной энергии на все моды канала иногда нужно куда-то загнать излишнюю энергию. Из-за этого возникает «мусорная мода», а оптимальное распределение энергии в среде по модам иногда становится неоднородным. Сейчас стоит задача: найти, когда распределение однородно, а когда нет (получить, что возможно, аналитически).


Смежные задачи


Есть ещё такое пальцевое соображение: поскольку Ева не знает, когда какое сигнальное состояние посылается, ей оптимально воздействовать одинаково на каждый посыл (было бы интересным это доказать строго, вроде бы это пока открытый вопрос). В итоге её действие приводит к вполне себе классическому шуму (увеличению тепловых фотонов5 в выходном состоянии). В то же время, если в среде канала тепловые фотоны есть, это представляется (может и не верно) как большее присутствие Евы. Потому задача нахождения оптимального распределения энергии по модам (т.е. по разным использованиям) канала при фиксированной общей энергии на среду (Еву) ассоциируется с чем-то наподобие оптимальной защиты от Евы. Какие-то такие сумбурные недоделанные мысли.



Вижу, что тренд постить в /forum/kriptografija топики «помогите решить задачу плииз» стал последнее время очень модным :) потому я решил не отставать от общества. Извините.


Интересно отметить, что, прийдя на этот сайт 6 лет назад, я был убеждён, что крипто останется в рамках хобби и развлечений. А теперь информация, почерпнутая отсюда, внезапно оказывается очень полезной и во вполне научных проектах: обоснование их стало более лучше проще писать pgpu.com помогают очень хорошо, т.к. знаешь, что бы хотели услышать классические криптографы :)


Есть также замечание по поводу «задачи о доказуемо уничтожимой информации» (не знаю, как правильнее назвать). Её можно решать не распределением секрета и оценкой границ на ресурсы атакующего (типа как Tor решает задачу анонимности), а отдельным «токеном». Правда, в классической физике такой невскрываемый токен не создать, а вот в квантовой физике можно — надо только держать информацию закодированной в квантовые состояния частиц, где правильным паролем на извлечение пассфразы из токена будет что-то типа базиса, в котором нужно померить частицы. Соответственно, любой другой пароль необратимо разрушит состояние, а потому и информацию в нём. Можно показать, что такая задача эквивалентна созданию квантовых банкнот, с которых начинало свою историю QKD. В практическом смысле это всё пока фантастика — масимальное время декогеренции квантовых состояний, даже в совершенно непрактичных приборах, достигает времени максимум несколько минут. Однако, это не мешает придумать какой-нибудь инетерсный протокол под такую задачу, обосновать его, запостить пост сначала куда-нить в журнал, а потом сюда в форум. В общем, беда в том, что по банкнотам нечего исследовать — там всё и так понятно, всё упирается в эксперимент. unknown, у вас есть какие-нибудь идеи? Надо бы найти время изложить, почему это сводится к задаче о банкнотах...


Разный оффтопик



Ага, вижу. Странно только, что в базе ISI (apps.webofknowledge.com — доступно только при подписке) её почему-то нет. У нас в теме что-то аналогичное тоже есть: Беннет и Шор, «Quantum information theory» (жаль, нигде не смог найти её в свободном доступе). Последнее время редакторами секций квантовой теории информации там были Андреас Винтер, потом Патрик Хайден и сейчас Александр Холево. Поглядел на их статистику: у Винтера там 17 работ, процитированных, соответственно, 0, 1, 4, 19, 8, 9, 11, 8, 4, 12, 20, 54, 29, 5, 36, 18 и 65 раз. У Хайдена (он курировал нашу работу) — 6 статей, процитированных 0, 3, 13, 4, 12 и 54 раз (как правило 0 означает «только что опубликованные»). У Холево там 2 работы: одна процитирована 8 (конференционная статья), а другая 372 раза. У Беннета 6 работ, процитированных 54, 44, 120, 193, 117 и 435 раз. У Питера Шора — 8, процитированных 0, 1, 11, 54, 120, 193, 348 и 11 раз. Его статья по решению задачи факторизации «Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer» опубликована в другом журнале и процитирована 1279 раз. Работа Эль Гамаля «A public key cryptosystem and a signature scheme based on discrete logarithms» (1985) — опубликована там же, в IEEE Tr. Inf. Theor., и процитирована 1492 раза. Текущий Publishing editor журнала имеет в нём всего 4 статьи.


Для сравнения: один из самых сильных результатов в нашей области (Хастингс, 2009 год, Nature Physics) — контрпример, показывающий, что отсутствие памяти в квантовом канале не влечёт за собой его аддитивность — был процитирован 71 раз. Впрочем, все продолжают верить, что в неизвращённых каналах, типа гауссовских, аддитивность (по входной энергии) всё же соблюдается, хотя сей факт не доказан даже в предположении, что гауссовы состояния оптимальны для гауссова квантового канала6. Кстати, эта оптимальность — одна из «hard problem», над которой уже много лет бьётся куча коллективов по всему миру. У нас показали эквивалентность этой задачи некоторой другой. Ранее были ошибочные доказательства7, даже от вполне крупных деятелей.



Наверное, эту (Phys Rev A, 2008). После неё ещё была другая (New J. Phys., 2009), куда меня, я считаю, тупо вписали, т.к. непосредственно моих результатов там нет, но я всё же оказывал существенную консультационную поддержку и задал направление «куда копать». Там глубже исследовалось то, что было найдено (практически случайно) в первой работе. По ISI PRA-статья процитирована 12 раз, NJP — 8. Самоцитирования в ISI по умолчанию учитываются, а автоматически исключить так называемые «ring citations» вообще нет возможности. NJP (английское издательство, не американское) — интересный подход к науке: на бумаге не печатается (только в интернете); импакт-фактор выше, чем у PRA; публикации платны (около тысячи евро за статью — естественно, отбиваются за счёт грантов), но свободны для скачивания всеми.



Кстати, не знал, что автор keccak на марше, первым соавтором :) «Reconciliation of a quantum-distributed Gaussian key» (arXiv, 35 цитирований по ISI).



В IEEE Tr. Inf. Theor. та же ситуация. Быстрее, чем за 2 года, как правило, опубликоваться там не получается, а для современной науки это длительный срок (в PRA в норме уходит не более полугода, обычно меньше, год — это уже очень долго считается). У нас вообще 3 года ушло, из которых год редактор ждал рецензии от оппонентов (по их правилам крайний срок — 4 месяца), потом полтора года мы тянули с ответом оппонентам, тщательно перерабатывая статью и увеличивая её с 8ми до 39 страниц. На новый год получили подарочное сообщение о принятии (я так понял, посмотрев на весь этот ужас, редактор решил от оппонентов ответа не ждать, а просто согласиться), и вот ещё пол года она будет стоять в списке очереди на публикацию. Понятно, что из-за таких задержек рисковать стоит, только если есть существенная уверенность в том, что статья будет принята. Холево, текущий редактор IEEE Tr. Inf. Theor., говорит, что вообще не понятно, что делать: рецензентам посылаешь статью, а они не отвечают, и никаких средств давления/принуждения нет, поскольку оппонирование статьи — добровольный и неоплачиваемый процесс, даже в таких журналах.


В плане других журналов всё тоже не очень: PRA — рядовой, для средних результатов, процент трэша там неимоверно велик, а народ жалуется (в том числе из других областей), что уровень реферирования там сильно пал. Некоторые шустрые деятели способны выдавать пустые статьи в PRA буквально ежемесячно. NJP лишь немного получше, но имеет те же проблемы, и он платный. PRL (Physical Review Letters) пока всем хорош, кроме одного: там жёсткое ограничение в 4 страницы, и большинство результатов на них даже сжато не изложить — у меня один ввод системы обозначений и переменных 4 страницы занял :( Rev Mod Phys — только для ревью, а не для оригинальных результатов, а так всем хорош. В журналы типа J. of Phys. A и Theor. Mat. Phys. слать можно, но аудитория там не сравнимая с PRA, да и импакт-факторы у них не очень. Всякие совсем профильные журналы, типа J. of. Quant. Inf., имеют вообще низкий фактор, и на них в университетах часто не оформлена подписка (на Physical Review, для сравнения, подписаны почти все), хотя при существовании arXiv'а это уже не проблема. Есть, конечно, и совсем крутые журналы, типа Nature Physics, но для обычных смертных это вообще за гранью достижимого, особенно по теории там опубликоваться (хотя есть прецеденты, когда публикуют там даже результаты своих PhD). Единственный результат в нашей узкой области, наверное, который туда удалось бы пропихнуть — доказательство «Gaussian conjecture», про которое выше написал. Вот так и получается: жуналов много, а опубликоваться негде (журналы либо слишком хорошие для рядовых статей, либо ниже порога отсечения шлака). Если вокруг сидят куча Эль Нашей со статьями, живущими по r-стратегии, а ты живёшь по k-стратегии, конкурировать трудно: обойдут по всем показателям. Ну не писать же в журнал «не публикуйте фигню от таких-то людей», в конце концов. За счёт тонкой границы между тем, что является якобы существенной новизной и ранее известными вещами можно массово пропихивать пустые статьи, а низкий уровень оппонирования, который в частности объясняется дифференциацией и разрастанием науки, этому только способствует.


Конференции тоже катятся вниз: появилось такое понятие, как «junk conferences». И если журналы хоть как-то прижучить можно, то с конференций вообще спрос никакой — это просто бизнес, где обычные участники платят fee, с которых оплачивается карман организаторов и приезд так называемых «приглашённых докладчиков». Чтобы послушать последних, обычные участники платят деньги подобно тому, как они их платят артистам в цирке/театре за посещение концерта — разницы абсолютно никакой. Организаторы конференций при этом наглеют, «приглашают самих себя и своих друзей», устраивают междусобойчики, в одно рыло раздают несколько докладов. Даже если доклад сделан чьим-то подчинённым, то приглашают выступить его номинального руководителя, а не исполнителя. Более того, приглашая громкие фамилии, даже не интересуются, есть ли им что рассказать. Громкие фамилии потом приезжают и рассказывают, что под их крышей было сделано, часто слабо осознавая что же там на самом-то деле делалось. Получаем порочный круг: громкие фамилии приглашают, потому что они рассказывают умные, но чужие по сути, вещи, а рассказывают они их потому, что их приглашают. И некому разомкнуть этот порочный круг. У обываетелй же со стороны при этом создаётся ложное впечатление о том, что 99% науки делает 1% людей. Аргумент же о том, что у каждого только 24 часа в сутках не вразумляет: будь ты хоть нобелевский лауреат, но физически невозможно вести более, чем 2-3 работы параллельно. И потому если у тебя 300 работ, значит на тебя работают рабы и ты мошенник, в лучшем случае, а в худшем — ты просто массово публикуешь шлак. Самостоятельно невозможно по физике в год сделать более, чем 2-3 хороших работы. Грубый лимит при самой идеальнейшей продуктивности получился бы равным 140 статей за всю жизнь (реально он намного ниже), а хороших основополагающих статей хорошо, если удастся сделать штуки 3 за всю жизнь.


Есть ещё такая мысль: наука — это пирамида. Невозможно изучить все труды своих предшественников. Начиная с какого-то момента (пожалуй, он уже наступил) народ будет обречён переизобретать велиспеды. Частично это решается за счёт «пирамиды»: новые люди приходят на новые задачи, в новые области, а в старых остаются те, кто их начинал в молодости. В итоге многообразие приведёт к тому, что у каждого будет своя тема, и 2 человека в соседних кабинетах из одной области даже понимать друг друга не будут. Это приведёт к тому, что эксперт-оценщик и производитель результата — одно лицо, другие просто не поймут, кто что делает. Из-за этого начнётся новый виток падения уровня рецензирования, чем активно воспользуются мошенники, надувая журналы пустыми статьями. Нежелание писать научно-популярные и обзорные статьи приведёт к тому, что никто не будет понимать, что происходит глобально, в целом, даже в его узкой области. Из-за дальнейшей дифференциации понадобятся «междисциплинарные переводчики», которые принципиально не будут заниматься наукой, но будут обязаны заниматься тем, что впитывать ключевые результаты из разных областей, чтобы потом хоть как-то объяснить научной/административной/прочей общественности, что происходит, кто чем занимается, и зачем это нужно. Уже сейчас чётко видно: каждый приходит на свою узкую задачу и не знает ничего ни на шаг вокруг. Проходит много лет, прежде чем такой новичок станет понимать хоть какие-то чужие статьи. И нужны десятилетия, чтобы научиться видеть всю область в целом, умея читать/понимать публикации с журналов/архива так же легко, как обычные новости.



У этого подхода, кстати, есть и обратная сторона. Например, аспиранту ставят неподъёмную трудную задачу в области, «чтобы не публиковать шлак», он над ней 3 года бьётся, а решить не может. Время ушло, публикаций нет, защищаться на чём? Как доказать, что он эти 3 года работал? Такой потом кое-как защищается, полностью разочаровывается в науке, плюёт на всё и идёт учить детей в школу. Лично видел примеры. Никогда не стоит недооценивать неумелое руководство :) Могу сказать, что мне по российской аспирантуре поставили на мой взгляд неподъёмную для моего уровня задачу, решить которую я не смог. Банально даже математической подготовки не хватало, чтобы её толком осознать. По сути я должен был сделать то, что в своё время не смог сделать ни Фок, ни мой шеф, ну не хило, я бы сказал. И с итальянской аспирантурой могло бы получиться подобное: шанс, что задачу решить не удастся, а после меня останутся только тупые графики с численной оптимизацией, был процентов 95. Конечно, на этом тоже можно было бы защититься, с большим скрипом, но это явно не то, чего ждёшь от аспирантуры. Во всяком случае, первые полтора года прогресс по решению был практически нулевой, а сама задача доделывалась существенно позже всяких защит; главный же гвоздь статьи — нахождение фндаментальных констант канала — появился в процессе дописывания текста статьи, когда считалось, что «уже всё готово, надо как можно быстрее довершить и отослать».



3«Сделано у нас» в МИАН в 1973ем году: гордимся и восхищаемся! Американцам очень обидно, что они не первые: у них ведь это тоже доказали, но позже. Короче, они компенсируются тем, что называют её Holevo-Schumacher-Westmoreland (HSW) theorem, так что увидите в литературе аббревиатуру HSW — не пугайтесь. Впрочем, в статьях обычно упоминаний Шумахера и Вестморланда не делается. В книгах политкорректности ради называют по 3ём авторам, но всё равно отмечают, что Холево был первым. По правде говоря, Шумахер предоставил альетнативное доказательство, просто ему тут «повезло» оказаться не первым. В плане же других результатов, это вполне известная личность, с вполне заслуженным признанием и блестящими результатами в области квантовой информатики.
4Соотношение неопределённостей не даёт мерить одновременно и точно.
5Термин «тепловые фотоны» следует воспринимать как просто параметр состояния, а не как разные частицы (прозрачная параллель там есть, но неопытного она может запутать).
6Я решил пойти другим путём, и ввёл другой тип аддитивности — по среде канала, который при некоторых параметрах нарушается, а при других нет. Если удастся что-то существенное нарыть в этом направлении, будет замечательно — под задачу подан один из грантов.
7Работа в arXiv'е официально помечена как ошибочная, ошибку нашёл Холево и потом пол года убеждал авторов в её существовании (к счастью, убедил).


 
На страницу: 1, 2, 3 След.
Комментарии
— spinore (27/05/2012 20:42)   профиль/связь   <#>
комментариев: 1515   документов: 44   редакций: 5786
Да, мне так и подумалось сразу, что relativistic Bob = Rob. Но вот почему только Rob, а не «Ралиса» (relativistic + Alice)? Или достаточно только одного из них сделать релятивистским? Если речь идёт не о фотонах, то всегда можно выбором системы отсчёта свести задачу к тому, что один будет релятивистским, а другой — нет (в пределе — покоящийся).

В том же время, насколько это важно, чтобы переопределять устоявшиеся термины? Или это из-за того, что нужно рассматривать одновременно как релятивитского Боба, так и нерелятивистского? Одним словом, всё равно много вопросов остаётся.

P.S.: текст «Identifying terrorists via their communication footprint» (по ссылке) впечатляет.
— unknown (27/05/2012 21:46)   профиль/связь   <#>
комментариев: 9796   документов: 488   редакций: 5664
Думаю, так всё и есть.
Алиса всегда инициатор протокола, что-нибудь первой посылает, вызывает на связь. Поэтому, вероятно, удобнее как-то делать привязку к ней, как покоящейся.

Не помню, как это положено всё описывать строго, но во всяком научпопе при рассмотрении примеров постоянно сравнивают релятивистский и обычный случай. Кажется, исторически в физике так тоже было (хотя сейчас уже может и неактуально). Поэтому, наверное иногда и делают отсылки от Роба к Бобу — даже на слайде с вашего комента. Кстати, ссылка со списком докладов не открывается.
— spinore (28/05/2012 01:37)   профиль/связь   <#>
комментариев: 1515   документов: 44   редакций: 5786

Ну если важно рассмотреть оба случая или подчеркнуть отличия, то да. Просто свобода выбора того, что принимается за покоящуюся систему, остаётся всегда. С тем же успехом можно считать, что Земля покоится, а Солнце движется вокруг неё. Единственное концептуальное отличие — инерциальность системы: описание движения в неинерциальных системах (пример — Солнце вокруг Земли, в общем случае — движение системы отсчёта с ускорением) намного тяжелее, чем в инерциальных.


Просмотрел тот факт, что она содержит пробел. Как известно, нет никакого способа правильно вставить ссылки содержащие пробел. Движок превращает его в плюс, потом можно поменять обратно руками. Вот правильная ссылка:
http://www.quin.fysik.dtu.dk/English/News/Workshop 2012/Program.aspx
— Гость (28/05/2012 12:08)   <#>
[offtop]
Тим Ральф откровенно смеётся над слушателями: Алиса и Роб, в космосе, на релятивистских скоростях, а между ними... квантовое распределение ключей :) Ева, естественно, схематически изображена в виде летающей тарелки/НЛО (ну а кому ещё в космосе атаковать?)
А что тут смешного? В космосе секретность тоже может понадобиться, да и "тарелки" тоже весьма летают...

[/offtop]
— spinore (03/11/2012 10:37)   профиль/связь   <#>
комментариев: 1515   документов: 44   редакций: 5786

Очень напоминает transactional interpretation (может, это оно и есть?). На лурке её описали как

частица посылает запрос в будущее (волна предложение) и получает ответ из будущего (волна подтверждение). Степень совпадения фаз определяет амплитуду.

«Ответ из будущего» — конечно, жуть. Резво расправляются с принципом причинности, который опровергать пока совсем нечем, одна фантазия; или, может, для красного словца так назвали, а в реальности объясние абсолютно обыденное...
— unknown (04/11/2012 19:36, исправлен 04/11/2012 19:42)   профиль/связь   <#>
комментариев: 9796   документов: 488   редакций: 5664

Мне как-то приходит в последнее время смутное понимание, что есть абстрактная физика ради математики, изучающая заведомо невозможные или скорее всего несуществующие в нашем мире физические абстракции. По аналогии с тем, как появлялась абстрактная алгебра и др. направления математики, её называют "абстрактной", "невозможной", "экзотической", "спекулятивной", не знаю, есть ли точный термин.


Например, нелинейная квантовая механика с нарушением принципа неопределённости Гейзенберга и сверхсветовыми скоростями (Daniel S. Abrams, Seth Lloyd).


Стандартное оправдание такие исследований: применение строгого научного подхода к созданию и изучению абстракций, существующих за пределами достоверных представлений о реальности, помогает лучше понять реальный мир.


Абстрактная или невозможная криптография тоже похоже существует, как computer science и физика (интересно в каких науках это ещё есть?). Но есть конечно граница (в основном методологическая) между такой маргинальщиной и откровенно (псевдо)научным фричеством.

— Гость (20/11/2013 19:31)   <#>
С вашим предыдущим постом согласен.


Некоторые люди мне сказали, что это называется «opertional theories». Это класс теорий, похожих на квантмех, в которых отказались от некоторых квантово-специфичных требований, оставив общую структуру. Можно прогуглить тему по фразам "operational theory" quantum и "operational theories" quantum. Например, почти сразу находится fileработа. В аннотации:

A central theme in current work in quantum information and quantum foundations is to see quantum mechanics as occupying one point in a space of possible theories, and to use this perspective to understand the special features and properties which single it out, and the possibilities for alternative theories. Two formalisms which have been used in this context are operational theories, and categorical quantum mechanics.

Правда, в отличие от вами упомянутой работы, дальше третьей страницы лучше не ходить, потому что есть такие дозы матана терката, которые для неподготовленного специальным образом теоретика являются летальными (про людей здесь речь вообще не идёт).

†-категории — это кто вообще такие? В википедии перевода на русский нет, гугл тоже не помогает. Это так называемые категории с инволюцией? А другая ссылка — это что? Симметричные моноидальные категории с инволюцией? Помню, unknown здесь обсуждал сантехническую разводку, а смотрю, она уже в вики, ха-ха. ☻
— Гость (17/08/2014 01:27)   <#>

По-моему, это очень похоже на то, что вы хотели:*

We establish the classical capacity of optical quantum channels as a sharp transition between two regimes—one which is an error-free regime for communication rates below the capacity, and the other in which the probability of correctly decoding a classical message converges exponentially fast to zero if the communication rate exceeds the classical capacity. This result is obtained by proving a strong converse theorem for the classical capacity of all phase-insensitive bosonic Gaussian channels, a well-established model of optical quantum communication channels, such as lossy optical fibers, amplifiers, and free-space links. Our result bolsters the understanding of the classical capacity of these channels and opens the path to applications such as proving the security of the noisy quantum storage models of cryptography for optical links. // Аннотация

We showed that the success probability of correctly decoding classical information asymptotically converges to zero in the limit of many channel uses, if the communication rate exceeds the capacity. Our result thus establishes the capacity of these channels as a very sharp dividing line between possible and impossible communication rates through these channels. This result might find an immediate application in proving security of noisy quantum storage models of cryptography [19] for continuous-variable systems. The results of this paper can also be easily extended to the more general case of multimode bosonic Gaussian channels [12]. // Стр. 15

Их ссылка [19] — это работа «Unconditional security from noisy quantum storage»:

We consider the implementation of two-party cryptographic primitives based on the sole assumption that no large-scale reliable quantum storage is available to the cheating party. We construct novel protocols for oblivious transfer and bit commitment, and prove that realistic noise levels provide security even against the most general attack. Such unconditional results were previously only known in the so-called bounded-storage model which is a special case of our setting. Our protocols can be implemented with present-day hardware used for quantum key distribution. In particular, no quantum storage is required for the honest parties. // Аннотация, IEEE TIT 2012.

Авторы первой работы зацепились за то, что для их типов гауссовых квантовых каналов выполняется «strong converse», что якобы (эзотерически) достаточно для сведения задачи к тому сценарию, который был рассмотрен в IEEE-2012, где, опираясь на «(quantum) bounded storage model» авторам удалось представить протоколы для BC** и OT.


*Наткнулся чисто случайно, просматривая цитирования. Эти ребята на наши работы сослались.
**Невозможный без дополнительных допущений в нерелятивистике (не путать с релятивистикой).
На страницу: 1, 2, 3 След.
Ваша оценка документа [показать результаты]
-3-2-1 0+1+2+3